The Coronavirus Is No Match Against Sybody 23

River D'Almeida, Ph.D
2 min readNov 6, 2020

The virus that causes COVID-19, SARS-CoV-2, uses its spike protein to gain access to cells, by binding to the ACE2 receptor. Unsurprisingly, stopping the spike protein from latching on to ACE2 has been a major focus in the design and development of COVID-19 therapeutics.

One such approach is by using antibodies (natural immune molecules that attach to pathogens) which have proven to be an effective and targeted way of blocking COVID-19 infection. The problem, however, is that identifying potent antibodies that target the virus and developing them into biological therapeutics has traditionally been time-consuming and costly. As COVID-19 case numbers continue to swell around the world, a lifesaving treatment could not come soon enough, making scientists look to other modalities as alternatives.

In a study published in Nature Communications, German scientists demonstrate the potential of synthetic nanobodies as a viable option to break through the development hurdles associated with bringing COVID-19 biologics to the clinic.

What exactly are nanobodies? These tiny antibodies are found in certain animals such as camels and llamas as part of their natural immune systems. Nanobodies’ small size and stability give them the edge over other (much bigger) immunoglobulins, particularly in the battle against viral pathogens…

--

--

River D'Almeida, Ph.D

Follow me for bite-sized stories on the latest discoveries and innovations in biomedical research.